Novel Adeno-Associated Viral Vector Delivering the Utrophin Gene Regulator Jazz Counteracts Dystrophic Pathology in mdx Mice

نویسندگان

  • Georgios Strimpakos
  • Nicoletta Corbi
  • Cinzia Pisani
  • Maria Grazia Di Certo
  • Annalisa Onori
  • Siro Luvisetto
  • Cinzia Severini
  • Francesca Gabanella
  • Lucia Monaco
  • Elisabetta Mattei
  • Claudio Passananti
چکیده

Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice.

The absence of the cytoskeletal protein dystrophin results in Duchenne muscular dystrophy (DMD). The utrophin protein is the best candidate for dystrophin replacement in DMD patients. To obtain therapeutic levels of utrophin expression in dystrophic muscle, we developed an alternative strategy based on the use of artificial zinc finger transcription factors (ZF ATFs). The ZF ATF 'Jazz' was rece...

متن کامل

Utrophin up-regulation by artificial transcription factors induces muscle rescue and impacts the neuromuscular junction in mdx mice

Up-regulation of the dystrophin-related gene utrophin represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy (DMD). In order to re-program the utrophin expression level in muscle, we engineered artificial zinc finger transcription factors (ZF-ATFs) that target the utrophin 'A' promoter. We have previously shown that the ZF-ATF "Jazz", either by transgenic m...

متن کامل

Rescue of Dystrophic Skeletal Muscle by PGC-1α Involves a Fast to Slow Fiber Type Shift in the mdx Mouse

Increased utrophin expression is known to reduce pathology in dystrophin-deficient skeletal muscles. Transgenic over-expression of PGC-1α has been shown to increase levels of utrophin mRNA and improve the histology of mdx muscles. Other reports have shown that PGC-1α signaling can lead to increased oxidative capacity and a fast to slow fiber type shift. Given that it has been shown that slow fi...

متن کامل

Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice.

Utrophin has been studied extensively in recent years in an effort to find a cure for Duchenne muscular dystrophy. In this context, we previously showed that mice expressing enhanced muscle calcineurin activity (CnA*) displayed elevated levels of utrophin around their sarcolemma. In the present study, we therefore crossed CnA* mice with mdx mice to determine the suitability of elevating calcine...

متن کامل

Exercise increases utrophin protein expression in the mdx mouse model of Duchenne muscular dystrophy.

INTRODUCTION Duchenne muscular dystrophy (DMD) is a lethal genetic disease caused by mutations in the dystrophin gene resulting in chronic muscle damage, muscle wasting, and premature death. Utrophin is a dystrophin protein homologue that increases dystrophic muscle function and reduces pathology. Currently, no treatments that increase utrophin protein expression exist. However, exercise increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 229  شماره 

صفحات  -

تاریخ انتشار 2014